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Abstract A preliminary assessment of the spatial scale dependency of sediment 
yield from the Eden basin in northwest England is made on the basis of: suspen-
ded and bed load yield estimates at scales from 1 to 1370 km2, spot samples of 
suspended sediment concentration, and a dual resolution mapping exercise in 
which a generalized soil erosion risk map for the upper Eden (322 km2) is com-
plemented by a high resolution (2 m) map of erosion features and sediment 
transport pathways in a 5.4-ha farm field. Overall, annual specific total sediment 
yield decreases as basin area increases: specific bed load yield decreases rapidly 
but specific suspended load yield may even show a small downstream increase. 
The spot sampling campaign and the dual resolution mapping exercise suggest 
that this could reflect the impact of livestock farming in the more lowland areas. 
The results demonstrate the importance of sediment source and transport path-
ways in explaining scale dependency in sediment yield. 
Key words  CHASM; erosion map; scale dependency; sediment source; sediment yield 

 
 
INTRODUCTION 
 
Both inverse and direct relationships between specific sediment yield and basin area have 
been documented (e.g. Dedkov & Moszherin, 1992; Morris & Fan, 1997). However, 
the clear physically-based rules which define a general spatial scaling theory have yet to 
emerge. This study therefore makes a preliminary characterization of the sediment yield 
of the River Eden basin in northwest England (Fig. 1) and investigates the role which 
sediment source plays in determining the relationship between sediment yield and 
basin area. 
 The upper Eden basin (322 km2) above Appleby is one of four mesoscale basins 
(order 100 km2) which have been extensively instrumented under the CHASM 
(Catchment Hydrology And Sustainable Management) programme (http://www.ncl.ac.uk/ 
chasm). Under the common experimental design, the mesoscale basin contains a pair 
of miniscale basins (order 10 km2), which in turn contain microscale basins (order 1 km2), 
which themselves contain hillslope patch sites (order 100–10 000 m2). The upper Eden 
basin is rural and encompasses both upland (peat moorland and unimproved pasture) 
and lowland (pasture with some arable farming) areas, a spatial distinction which is  
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Fig. 1 Eden basin location and map. 

 
 
represented by the two miniscale basins, Artlegarth Beck (upland) and Blind Beck 
(lowland). Elevation ranges from 125 m at Appleby, to 788 m. Annual precipitation 
ranges from less than 900 mm in the main valley to more than 1900 mm in the uplands. 
The river is gravel-bedded. Within the upper basin there are two Environment Agency 
gauging stations on the Eden at Kirkby Stephen (area 69 km2) and Great Musgrave 
(223 km2). Along the 6-km stretch between the two lie the confluences with the other 
three principal headwater tributaries: Swindale Beck (27 km2), Scandal Beck (40 km2) 
and the River Belah (53 km2) (Fig. 1). Two further stations allow extension beyond the 
CHASM basin: Temple Sowerby (616 km2) and Warwick Bridge (1370 km2). 
 
 
SEDIMENT YIELD CHARACTERIZATION 
 
Mean annual sediment yield was estimated at nine locations on a nested basis, using 
the flow-duration/sediment-rating-curve method (Julien, 1998, p. 235). Flow-duration 
curves were obtained from the Environment Agency for the four gauging stations. Curves 
for the remaining five locations were then derived from an empirical relationship between 
flow-duration curve form and basin area (Vivier, 2002; Orange, 2004). 
 As a regular sediment transport monitoring programme was not in place at the time 
of the studies, the rating curves were constructed by indirect methods. Suspended sedi-
ment transport was represented by the standard power relationship: 

bC aQ=   (1) 

where C is concentration and Q is discharge. Values of the constants a and b were 
transferred from three sites elsewhere in the UK considered to have some similarity to 
headwater (Gais Gill), intermediate (Kirkby Stephen), and downstream (Warwick 
Bridge) sites in the Eden basin in terms of area and geomorphological context. Details  
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Table 1 Transfer of suspended sediment rating curves to the Eden basin. 

Data source:  Quantified constants:  Equivalent Eden site: 
River Area (km2) Reference  a b  Site Area (km2)
Cyff (Wye)  3.1 Leeks & Marks 

(1997) 
0.025 1 Gais Gill 1.08 

Ystwyth 170 Walling & Webb 
(1981) 

0.001 1.43 Kirkby Stephen 69 

Tyne 2159 Walling & Webb 
(1981) 

3.8 × 10-6 1.86 Warwick Bridge 1370 

C = aQb; C in g l-1, Q in m3 s-1. 

 
are shown in Table 1, where the values of a and b were determined by Vivier (2002) 
and not from the original reference. Although this is an arbitrary approach, it is 
consistent with the range of exponent b (0.3–2) and the inverse relationship between a 
and b noted by Walling & Webb (1981). Values of a and b were then obtained for the 
other Eden sites by interpolation between the values in Table 1 on the basis of area 
(Vivier, 2002; Orange, 2004). The results obtained from using these rating curves 
should of course be considered as no more than order of magnitude guidelines.  
 Bed load transport was calculated as (Bathurst, 2004):  

( ) ( )24.15.1
84

5.013.3
5050

5.16 0133.0102.22 −− −×= SDgqDDSg Ss   (2) 

where gs is bed load transport per unit width (g s-1 m-1), q is water discharge per unit 
width (m3 s-1 m-1), S is slope (m m-1), Dn is particle size of surface (armour layer) bed 
material for which n% of sizes are smaller (m) (obtained using the Wolman (1954) 
sampling technique), Dns refers to the same for the subsurface material (m) and g is 
acceleration due to gravity (m s-2). Subsurface material size distribution was not 
measured, owing to the difficulty of excavating the river bed. However, D50/D50S 
typically ranges between 1 and 10 and a value of 3, characteristic of the more developed 
gravel-bed streams, was assumed for all sites. Channel slope was taken from the UK 
Ordnance Survey 1:50 000 scale map in order to be representative at the larger reach 
scale. Bed material and slope data for the Temple Sowerby and Warwick Bridge 
stations were taken from Hey & Thorne (1986).  
 The derived annual specific sediment yields (Vivier, 2002; Orange, 2004) are 
given in Table 2 and plotted against basin area in Fig. 2. 

 
SEDIMENT SOURCE 
 
Attention was directed to investigating: the variation of sediment supply between the 
main headwater basins (Swindale Beck, Scandal Beck, River Belah and the Eden at 
Kirkby Stephen, shown in Table 2); the impact of agricultural activity on supply; and 
mapping supply at different scales. 
 
 
Agricultural activity impact 
 
Livestock density is generally greater in the lowland than in the upland areas. Spot 
measurements of suspended sediment concentration and discharge (Vogel, 2003; Orange,  
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Table 2 Summary of the Eden basin sediment yield estimates. 

Site Basin area 
(km2) 

Channel slope 
(m m-1) 

Suspended 
sediment yield 
(t km-2 year-1) 

Bed load yield  
(t km-2 year-1) 

Total yield  
(t km-2 year-1) 

Eden, WB 1370 0.0017 14.1 0.29 14.4 
Eden, TS 616 0.0015 15.7 0.03 15.8 
Eden, A 322 0.0024 25.0 0.56 25.5 
Eden, GM 223 0.0023 30.2 0.54 30.7 
Eden, KS 69 0.0043 50.0 15.9 65.8 
Belah, BB 53 0.0102 46.8 171 217 
Scandal, S 40 0.0083 40.9 90 131 
Swindale, HGF 27 0.0105 33.8 177 210 
Artlegarth, GG 1.08 0.0520 21.5 544 565 
WB: Warwick Bridge; TS: Temple Sowerby; A: Appleby; GM: Great Musgrave; KS: Kirkby Stephen;  
BB: Belah Bridge; S: Soulby; HGF: Hall Garth Farm; GG: Gais Gill. 
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Fig. 2 Relationship between suspended and bed load sediment yields and basin area. 

 
 
2004) were therefore made in the contrasting miniscale basins: the upland Artlegarth 
Beck at Gais Gill and the lowland Blind Beck and nearby Hill Top Farm. Data were also 
collected for the principal headwater basins. 
 
 
Erosion mapping 
 
Erosion mapping was carried out at two scales (Gravier, 2004). First, a soil erosion risk 
map was constructed using ArcGIS for the Eden basin above Appleby. Component 
maps for annual rainfall, soil erodibility, hillslope gradient, land cover and cattle and 
sheep stocking density were aggregated on a weighted basis to give a map in which risk 
was represented qualitatively on a scale from “very low” to “very high” (Fig. 3).  
 At the second scale, a high resolution (2 m) map was constructed of an approx-
imately 5.4-ha area of Sykeside Farm, within the Blind Beck miniscale basin and also 
within the “high risk” zone of the soil erosion risk map. The aim was to complement  
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Fig. 3 Soil erosion risk map for the upper Eden basin. 

 
 
the generalized risk map with information on the erosion features and pathways respons-
ible for the supply of sediment to the channel system. A digital elevation model was 
built up from spatial coordinates and altitudes measured every 2 m by a differential 
Global Positioning System (dGPS) and converted to ArcGIS file format. Erosion fea-
tures and sediment transport pathways, such as drainage ditches, sheep paths, stream 
banks and areas of bare soil were identified by visual survey and integrated into the map 
as digital photographs (Fig. 4). 
 
 
ANALYSIS 
 
Overall the annual specific sediment yield decreases as area increases but contrasting 
patterns are shown by the component suspended and bed load yields (Fig. 2). 
 
 
Suspended load yield 
 
The estimated specific suspended sediment yields vary within a narrow range of 10 to 
50 t km-2 year-1. These values are probably slight underestimates, at least for the smaller 
basins: Walling & Webb (1981) quote measured yields of up to 250 t km-2 year-1 for 
small north Pennine basins and the few spot samples of suspended sediment 
concentration also suggest that the estimated rating curves may underestimate the true 
suspended load. On the other hand, yields of less than 50 t km-2 year-1 have been 
widely measured on the east side of the Pennines at scales of 500–8000 km2 (Wass & 
Leeks, 1999). The absolute values should therefore be viewed as preliminary estimates, 
to be upgraded as measurements become available. 
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Fig. 4 Fine resolution map of sediment sources and transport pathways, Sykeside Farm. 

 
 
 The relative values show an increase in yield with area for the small basins, followed 
by an inverse relationship at the larger scales. Given that the change in relationship 
occurs at the data point for Kirkby Stephen (which is a hinge point in the variation of 
the assumed rating curves (Table 1)), it is possible that the pattern is, at least in part, a 
function of the choice of rating curves. On the other hand there is evidence from the field 
measurements that the middle reaches of the upper Eden may provide an enhanced sedi-
ment yield. In particular, comparison can be made between the total headwater inputs 
(representing an area of 189 km2) and the output from Great Musgrave (area 223 km2). 
Based on spot samples for four low flow occasions in summer 2004, the combined 
average input of the four headwater catchments (0.90 g s-1) is similar to the average 
output from Great Musgrave (0.95 g s-1), suggesting that at low flows there is a little 
net supply or deposition along the intervening reaches. However, for a (single) high 
flow event, the Great Musgrave output (1940 g s-1) is three times greater than the 
combined headwater input (621 g s-1). Caution must be exercised, given the unrepresen-
tative nature of a single spot measurement. Nevertheless, it is possible that, compared 
with the headwater basins, the middle reaches may be contributing a proportionally 
higher sediment load during the higher transport events. Possible sources are ditches and 
minor streams, bank erosion and the channel bed.  
 The role of land use is further highlighted by the spot measurements. In 2003, mea-
sured concentrations during the low flow period at a ditch at Hill Top Farm near Great 
Musgrave were up to 30 mg l-1 (compared with less than 5 mg l-1 in the main rivers). 
Similarly, in 2004, low flow concentrations were marginally, but consistently, higher 
at the Blind Beck lowland miniscale basin (1.4–2.3 mg l-1) than at the Gais Gill upland 
microscale basin (0.35–0.79 mg l-1). The minor lowland water courses may therefore 
be contributing higher concentrations of suspended sediment than their upland counter-
parts, reflecting the impact of agriculture (and livestock farming in particular). 
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Bed load yield 
 
The estimated bed load yields fall sharply from 544 t km-2 year-1 to rather less than 
1 t km-2 year-1 as area increases from 1 to 1370 km2 (Table 2). The values are generally 
comparable with those of 18–144 t km-2 year-1 measured in upland gravel-bed rivers in 
Scotland and England by Richards & McCaig (1985) and Newson & Leeks (1985). 
However, the large variation is probably exaggerated by the assumption of a value of 3 
for D50/D50S in equation (2). It is possible that the value should be higher for the 
steeper smaller rivers (reducing the sediment yield estimate) and lower for the gentler 
gradient larger rivers. Nevertheless, a downstream decrease in bed load yield accords 
with expectation. As slopes decrease and as distance from the primary sediment sources 
increases, the ability of the flow to collect and transport bed load decreases. Thus, from 
Table 2, the combined annual input from the four headwater basins is 18 500 t year-1, 
whereas the output from Great Musgrave is 120 t year-1. Even allowing for error in the 
bed load estimates, this suggests that much of the bed load discharge from the hills 
(above an elevation of about 200 m) enters storage in the lowland reaches. 
 
 
Dual resolution mapping 
 
The mapping exercise reinforces the above analysis. In the basin-scale risk map (Fig. 3), 
the weightings of the components are such that livestock density, land use and soil 
characteristics outweigh rainfall and slope. The central lowland area therefore exhibits 
a higher risk than most of the surrounding uplands, which is consistent with the variation 
of spot measurements of suspended sediment concentration. In other words, the supply 
of suspended sediment to the main river network is likely to be enhanced in the lowland 
areas, compared with the upland areas, by anthropogenic activity. 
 The use of regional datasets does not allow a complete representation of the poten-
tial for soil erosion, while the integration of the component maps to show overall risk 
does not allow for connectivity, i.e. the spatial links between sediment sources, sinks 
and delivery. The basin-scale risk map cannot therefore identify the exact location and 
nature of erosion features and sediment sources. By contrast, the fine resolution map 
(Fig. 4) shows very clearly sediment sources and their connection (or lack of connection) 
to the channel system. In this case the primary sediment sources are bank erosion in the 
minor streams. Transport pathways include ditches and livestock tracks.  
 
 
CONCLUSIONS 
 
Overall, specific sediment yield in the Eden basin is likely to decrease as basin area 
increases. In the headwater basins, bed load yield is likely to equal or even exceed sus-
pended load yield. In the more lowland reaches, bed load provides only a few percent 
of the total yield, while suspended load is likely to be enhanced by anthropogenic activ-
ity. Thus bed load yield declines rapidly as area increases, but suspended load yield may 
even show a small increase as area expands to include the lowland farms.  
 Given the approximate nature of the sediment yield estimates, the above conclusion 
should be considered as a hypothesis to be tested further as the CHASM project data 
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begin to become available. The results show, however, the importance of accounting 
for sediment source and transport pathways in explaining scale dependency in sediment 
yield. In this context, dual resolution mapping provides a means of comparing generalized 
erosion probabilities at the basin scale with specific sediment sources and transport 
pathways at the local scale. 
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